Engel, D. W. \& Koetzle, T. F. (1982). Neutron Scattering-1981, edited by J. Faber, pp. 147-149. New York: American Institute of Physics.
Engel, D. W. \& Koetzle, T. F. (1984). Acta Cryst. A40, 99-102.
Hamilton, W. C. (1965). Acta Cryst. 18, 502-510.
Hoard, J. L., Lee, B. \& Lind, M. D. (1965). J. Am. Chem. Soc. 87, 1612-1613.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 288-292. Birmingham: Kynoch Press.
Koester, L. (1977). Springer Tracts Mod. Phys. 80, 1-55.
Koetzle, T. F. \& Hamilton, W. C. (1975). Anomalous Scattering, edited by S. Ramaseshan \& S. C. Abrahams, pp. 489-502. Copenhagen: Munksgaard.
Lee, B. (1967). PhD Thesis, Cornell Univ. Cited in Diss. Abstr. B, 28, 84.
Lind, M. D., Lee, B. \& Hoard, J. L. (1965). J. Am. Chem. Soc. 87, 1611-1612.

McMullan, R. K., Andrews, L. C., Koetzle, T. F., Reidinger, F., Thomas, R. \& Williams, G. J. B. (1976). nexdas. Neutron and X-ray Data Acquisition System. Unpublished work.
Nassimbeni, L. R., Wright, M. R. W., van Niekerk, J. C. \& McCallum, P. A. (1979). Acta Cryst. B35, 1341-1345.
Takusagawa, F. (1977). Unpublished work.
Templeton, L. K., Templeton, D. H. \& Phizackerley, R. P. (1980). J. Am. Chem. Soc. 102, 1185-1 186.

Templeton, L. K., Templeton, D. H., Phizackerley, R. P. \& Hodgson, K. O. (1982). Acta Cryst. A38, 74-78.
Templeton, L. K., Templeton, D. h., Zalkin, A. \& Ruben, h. W. (1982). Acta Cryst. B38, 2155-2159.

Vector General Inc. (1973). FORTRAN Drawing Package Reference Manual. 8399 Topanga Canyon Blvd., Canoga Park, CA 91304, USA.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1984). C40, 1693-1695

Bis(phenylmethanethiolato)(2,3,9,10-tetramethyl-1,4,8,11-tetraaza-1,3,8,10-cyclotetradecatetraene)iron(III) Hexafluorophosphate, $\mathrm{C}_{28} \mathbf{H}_{38} \mathrm{FeN}_{4} \mathbf{S}_{2}^{+} . \mathrm{PF}_{6}^{-}$

By A. A. Aruffo,* B. D. Santarsiero, \dagger Verner Schomaker and E. C. Lingafelter
Department of Chemistry, University of Washington, Seattle, Washington 98195, USA and Division of Chemistry and Chemical Engineering, \ddagger California Institute of Technology, Pasadena, California 91125, USA

(Received 19 September 1983; accepted 26 June 1984)

Abstract

M_{r}=695.58\), space group $P \overline{1}, \quad a=$ 12.385 (3) $, \quad b=12.483(2), \quad c=12.155(2) \AA, \quad \alpha=$ 97.446 (12), $\quad \beta=111.408(12), \quad \gamma=63.960(13)^{\circ}, \quad V$ $=1570.8(5) \AA^{3}, Z=2, D_{x}=1.471(5) \mathrm{Mg} \mathrm{m}^{-3}, \mathrm{Nb}-$ filtered Mo $K \alpha$ radiation, $\quad \lambda=0.71069 \AA, \quad \mu=$ $0.738 \mathrm{~mm}^{-1}, \quad F(000)=722, \quad T \sim 290 \mathrm{~K}, \quad R=0.082$, $R_{w}=0.053, S=1.38$ for $3622,4040,4040$ reflections, 462 parameters. The average $\mathrm{Fe}-\mathrm{N}$ (TIM) and $\mathrm{Fe}-\mathrm{S}$ bond lengths are 1.928 (3) [6] (e.s.d. 0.003, scatter e.s.d. 0.006 of the average 1.928) and 2.288 (1) [2] \AA. Comparison with other Fe(TIM) complexes seems to imply increased donation of electron density from the axial ligands (here sulfur) to $\mathrm{Fe}^{\text {III }}$, and from $\mathrm{Fe}^{\mathrm{III}}$ to the diimines of TIM. The two cations are both centrosymmetric, but have different axial ligand conformations, one fully extended, away from the TIM plane, and the other with the phenyls lying next to the TIM plane $\left[\mathrm{Fe}-\mathrm{S}-\mathrm{C}-\mathrm{C}\right.$ torsion angles 176.7 (3) and $-80.2(5)^{\circ}$; $\mathrm{Fe}-\mathrm{S}-\mathrm{CH}_{2} 108 \cdot 8$ (2) and 114.4 (2) ${ }^{\circ}$].

^[* Present address: Department of Biochemistry, Harvard Univer sity, Cambridge, MA 02138, USA. \dagger Myron A. Bantrell Fellow In Chemistry, California Institute of Technology, 1981-1983. \ddagger Contribution No. 6910 from the Arthur Amos Noyes Laboratory of Chemical Physics, 127-72, California Institute of Technology, Pasadena, CA 91125, USA.]

0108-2701/84/101693-03\$01.50

Introduction. The crystal structures of two iron(II) complexes containing the macrocyclic ligand TIM (2,3,9,10-tetramethyl-1,4,8,11-tetraaza-1,3,8,10-cyclotetradecatetraene $), \quad\left[\mathrm{Fe}(\mathrm{TIM})\left(\mathrm{NCCH}_{3}\right)(\mathrm{CO})\right] .\left(\mathrm{PF}_{6}\right)_{2}$ (McCandlish, Santarsiero, Rose \& Lingafelter, 1979) and $\left[\mathrm{Fe}(\mathrm{TIM})\left(\mathrm{NCCH}_{3}\right)_{2}\right] \cdot\left(\mathrm{PF}_{6}\right)_{2}$ (Smith, Santarsiero \& Lingafelter, 1979), and one iron(III) complex, [Fe (TIM)(SCN) $)_{2}$. PF_{6} (Stenkamp \& Jensen, 1980), have been determined. Here we describe a second $\mathrm{Fe}^{\mathrm{II}}-\mathrm{TIM}$ structure, $\left[\mathrm{Fe}(\mathrm{TIM})\left(\mathrm{SCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right] \cdot \mathrm{PF}_{6}$.

Experimental. Crystals dark-brown cubes, 0.10 mm on edge, prepared by Dr E. O. Fey; Picker FACS-I diffractometer. Lattice constants by least-squares refinement of the orientation matrix from two settings, ' $\pm 2 \theta^{\prime}$ ', 27 reflections, $2 \theta>25^{\circ}$. Intensity measurements: 4081 reflections, $\pm h+k \pm l, 2 \theta \leq 45^{\circ}$, by $1.0^{\circ} \mathrm{min}^{-1} \theta-2 \theta$ scans of 2θ width 1.6° plus $\alpha_{1}-\alpha_{2}$ angular dispersion, 20 s post-scan stationary-crystal-stationary-counter background counts fore and aft. 5 check reflections every 50 reflections, with no unusual variations, led to $q=0.0057$ ('instability constant'), used in $1 / w_{F^{2}}=\left(s+r^{2} b+q^{2} I^{2}\right) k^{4} /(\mathrm{Lp})^{2}, \quad I=s-r b$, $F_{o}=k \sqrt{I / \mathrm{Lp}}, k=1.1781$ (12). Form factors from Stewart, Davidson \& Simpson (1965) for H, and from International Tables for X-ray Crystallography (1962)
© 1984 International Union of Crystallography

Table 1. Coordinates $\left(\times 10^{4}\right)$ and $U_{e q}$ values $\left(\AA^{2} \times 10^{4}\right)$

	x	y	z	$U_{\text {eq }}$
$\mathrm{Fe}(1)$	0	0	0	386
S(1)	$702 \cdot 8(12)$	268.0 (12)	1989.0 (10)	499
$\mathrm{N}(1.4)$	1300 (4)	-1603 (3)	363 (3)	410
$\mathrm{N}(2 A)$	1409 (4)	198 (4)	-155 (3)	432
$\mathrm{C}(1 a)$	2425 (5)	-1809 (4)	365 (4)	444
$\mathrm{C}(2 A)$	2464 (5)	-749 (5)	0 (4)	481
$\mathrm{C}(3 A)$	1241 (5)	1355 (5)	-521 (5)	688
C(4A)	268 (8)	2409 (5)	-137 (5)	714
C(5A)	-1110 (5)	2580 (4)	-716 (4)	565
C(6A)	3581 (5)	-2979 (5)	682 (5)	762
$\mathrm{C}(7 A)$	3601 (5)	-807 (5)	-222 (5)	803
$\mathrm{C}(8 \mathrm{~A})$	-581 (5)	1514 (5)	2360 (4)	687
C (91A)	-188(5)	1683 (4)	3686 (4)	501
C(92A)	-764 (5)	1449 (5)	4341 (5)	637
C(93A)	-438(7)	1635 (6)	5548 (6)	810
C(94A)	456 (8)	2047 (6)	6073 (5)	914
C(95A)	1076 (7)	2255 (6)	5441 (6)	966
C(96A)	740 (6)	2091 (5)	4249 (5)	791
$\mathrm{Fe}(2)$	5000	5000	5000	425
S(2)	3704.1 (13)	6785.3(12)	3962.7 (11)	546
$N(1 B)$	4046 (4)	4386 (3)	3664 (3)	474
$N(2 B)$	3638 (4)	5170 (3)	5522 (4)	463
$\mathrm{C}(1 B)$	2955 (5)	4481 (4)	3661 (5)	564
$\mathrm{C}(2 B)$	2746 (5)	4887 (5)	4784 (5)	557
$\mathrm{C}(3 B)$	3633 (5)	5569 (5)	6721 (5)	634
C(4B)	4190 (6)	6469 (5)	7150 (5)	684
$\mathrm{C}(5 B)$	5597 (6)	6015 (5)	7415 (4)	671
$\mathrm{C}\left(6 B^{\prime}\right.$	1952 (6)	4261 (5)	2621 (5)	829
$\mathrm{C}(7 \mathrm{~B})$	1636 (5)	4897 (5)	5034 (5)	830
$\mathrm{C}(8 B)$	4510 (5)	7724 (5)	4042 (5)	634
C(91B)	4708 (6)	8419 (5)	5141 (5)	577
C(92B)	3740 (7)	9061 (6)	5602 (6)	819
C(93B)	3950 (11)	9704 (7)	6588 (9)	1290
$\mathrm{C}(94 B)$	5125 (19)	9737 (12)	7119 (10)	1742
$\mathrm{C}(95 B)$	6063 (12)	9101 (11)	6697 (13)	1629
C(96B)	5872 (7)	8466 (6)	5697 (8)	1036
P	$2443 \cdot 1$ (16)	3996.1 (16)	8821.6 (14)	621
F(1)	3191 (3)	3420 (3)	7937 (3)	1126
F(6)	1724 (4)	4590 (4)	9719 (3)	1296
F(2)	1601 (16)	5148 (13)	8077 (18)	1550**
F(23)	1248 (13)	4223 (25)	7662 (16)	$1039+$
F(3)	1380 (12)	3543 (15)	8242 (12)	1102*
F(34)	2574 (36)	2731 (18)	8847 (23)	1381^{+}
F(4)	3232 (14)	2816 (11)	9653 (12)	1322**
F(45)	3764 (17)	3696 (30)	9861 (13)	$1100 \dagger$
F(5)	3467 (13)	4433 (17)	9503 (16)	1489**
F(25)	2326 (34)	5277 (21)	8534 (26)	$1207+$

* Partial population $=0.65$.
\dagger Partial population $=0.35$.

Table 1).* No corrections for absorption ($\mu d \simeq 0.074$) or extinction.

Discussion. The benzyl groups are deployed quite differently in the two centrosymmetric cations (Fig. 1), fully extended with rings almost perpendicular to the TIM plane in A, but flat-on, almost parallel to TIM, in $B\left[\mathrm{Fe}-\mathrm{S}-\mathrm{C}(8)-\mathrm{C}(91) 176.7\right.$ (3) vs $\left.80.2(5)^{\circ}\right]$. The cations are closely similar in most other respects, including the azimuth of $\mathrm{C}(8)$ |torsion angles in A $\mathrm{C}(8)-\mathrm{S}-\mathrm{Fe}-\mathrm{N}\left(1^{\prime}\right) \quad 22.8(2), \quad \mathrm{C}(8)-\mathrm{S}-\mathrm{Fe}-\mathrm{N}\left(2^{\prime}\right)$ $-57.2(2)^{\circ}$; in $\left.B 39.5(2),-40.6(2)^{\circ}\right]$. However, several minor differences indicate strain in $B: \mathrm{Fe}-$ $\mathrm{S}-\mathrm{C}(8) 5.6^{\circ}$ greater in B than A, where it is perhaps already unusually large $\left[114.4(2), 108.8(2)^{\circ}\right]$, and $\mathrm{S}-\mathrm{C}(8)-\mathrm{C}(91) 5 \cdot 1^{\circ}$ greater in B-and clearly abnormal [115.9(4), $\left.110.8(4)^{\circ}\right]$; in addition, S leans away from $\mathrm{N}\left(1^{\prime}\right)$, a little more in B than $A\left\{\left[\mathrm{~N}(1), \mathrm{N}(2), \mathrm{N}\left(1^{\prime}\right)\right.\right.$, $\mathrm{N}\left(2^{\prime}\right) \mid-\mathrm{Fe}-\mathrm{S}=83 \cdot 9,89 \cdot 7,96 \cdot 1,90 \cdot 4^{\circ}$ in B vs $85 \cdot 8$, $90.7,94.2,89.3^{\circ}$ in A, e.s.d.'s $\left.\sim 0.15^{\circ}\right\}$. If all these angles [at $C(8), S$, and Fe] were normal the close intramolecular contacts between benzyl and TIM in B Inotably $\quad \mathrm{C}(8) \cdots \mathrm{N}\left(2^{\prime}\right), \quad \mathrm{N}\left(1^{\prime}\right), \quad \mathrm{C}\left(2^{\prime}\right) \quad 3.305(7)$, 3.469 (7), 3.485 (8); C(91)…N(1'), C(1') 3.419 (8), 3.563 (9); C(92)…C(4) 3.681 (10); C(95)…C(6') 3.833 (16); $\quad \mathrm{C}(96) \cdots \mathrm{C}\left(1^{\prime}\right), \quad \mathrm{C}\left(6^{\prime}\right) \quad 3.388$ (10), 3.572 (11) \AA] would be shortened intolerably-by more than $0.5 \AA$. In B the torsions around $C(8)-C(91)$ sum to $182.5(14)^{\circ}$ [in A the sum is $180.9(11)^{\circ}$] in the sense to suggest that $C(92)$ and $C(96)$ are indeed forced against their TIM contacts by $C(91)$ in consequence of the angle strains at $C(8)$ and S. By and large, this interpretation is confirmed by the deviations from the phenyl least-squares plane and from the FeN_{4} plane. Phenyl: C(8) 0.036, C(91)-C(96) -0.002, -0.001, $-0.006,0.015,-0.018,0.011, \mathrm{Fe}(2) 3.266 \AA$. TIM: $\mathrm{C}(3)-0.12, \mathrm{C}(4) 0.57, \mathrm{C}(5)-0.05, \mathrm{C}\left(1^{\prime}\right)-0.14$, $C\left(2^{\prime}\right)-0.07, C\left(6^{\prime}\right)-0.41, C\left(7^{\prime}\right)-0.02, S(2) 2.3 \AA$.

Fig. 1. Stereo partial view of the structure. Molecule B is at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.

Table 2. Comparison of important structural features $\left(\AA,{ }^{\circ}\right)$ in $\mathrm{Fe}(\mathrm{TIM})$ compounds

	$\mathrm{Fe}(\mathrm{TIM})\left(\mathrm{SCH}_{2} \mathrm{Ph}\right)_{2}^{+}$	$\mathrm{Fe}(\mathrm{TIM})(\mathrm{SCN})_{2}^{+}$	$\mathrm{Fe}(\mathrm{TIM})\left(\mathrm{NCCH}_{3}\right)_{2}^{+}$	$\mathrm{Fe}(\mathrm{TIM})\left(\mathrm{NCCH}_{3}\right)(\mathrm{CO})^{2+}$	
$\mathrm{Fe}-\mathrm{N}$ (TIM)	1.928 (2) \|6		1.950 (3)	1.948 (1)	1.954 (1)
$\mathrm{Fe}-X_{\text {ax }}$ [al	S 2.288 (1) $12 \mid$	S 2.328 (2)	N 1.929 (1)	N 1.976 (3)	
$\mathrm{N}=\mathrm{C}$	1.298 (4) $\|3\|$	1.280 (4)	1.291 (2)	1.289 (2)	
$\mathrm{C}-\mathrm{C}$ (imine)	1.470 (8) $4 \mid$	1.491 (6)	1.477 (4)	1.480 (4)	
$\mathrm{N}-\mathrm{CH}_{2}$	1.480 (5) 51	1.493 (5)	1.475 (3)	1.467 (3)	
$\mathrm{CH}_{2}-\mathrm{CH}_{2}$	1.506 (6) $\|5\|$	1.509 (5)	1.505 (3)	1.512 (4)	
$\mathrm{C}-\mathrm{CH}_{3}$	1.503 (4) $\|4\|$	1.500 (5)	1.516 (4)	1.519 (3)	
$\mathrm{N} \cdot \mathrm{}$.N (TIM)	2.481 (4) $\|3\|$	2.504 (5)	2.524 (3)	2.534 (3)	
	2.952 (4) $\|3\|$	2.990 (5)	2.968 (2)	2.973 (3)	
$\mathrm{N}_{\text {тıм }} \cdots X_{\text {axala }}$	2.828 (5)	2.956 (4)	2.712 (3)	2.722 (4)	
range	$3 \cdot 142$ (5)	3.115 (4)	2.774 (2)	2.755 (4)	
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	116.2 (4) $12 \mid$	$115 \cdot 8$ (4)	115.5 (2)	116.4 (4)	
$\mathrm{Fe} \mathrm{N}-\mathrm{CH}_{2} \mathrm{CH}_{2}$	31.61121	30	40	40	
$\mathrm{Fe}-X_{\text {axial }}-\dot{\mathrm{C}}$	111.6 (1) $128 \mid$	104	178	176	

Fig. 2. Bond lengths ($\dot{\mathrm{A}}$) and angles; upper entries for A, lower entries for B. Not included: $\mathrm{Fe}-\mathrm{S} 2 \cdot 2856$ (10), $2 \cdot 2898$ (10) \AA; S-C(8) 1.822 (6), 1.818 (6) \AA; $\mathrm{C}(8)-\mathrm{C}(91) 1.520$ (8), 1.499 (9) \AA; $\mathrm{Fe}-\mathrm{S}-\mathrm{C}(8) 108.8$ (2), 114.4 (2) ${ }^{\circ} ; \mathrm{S}-\mathrm{C}(8)-\mathrm{C}(91) \quad 110.8$ (4), $115.9(4)^{\circ}$.

The phenyl deviations $\mathrm{C}(91)-\mathrm{C}(96)$ are very small (scatter e.s.d. $0.012 \AA$), and only a trifle greater than for $A(0.010 \AA)$, while the $\mathrm{C}(8)$ is a bit greater for A than for B. The TIM deviations are more impressive, however: r.m.s. $0 \cdot 186 \AA$ for B [excepting C(4)] vs $0 \cdot 104 \AA$ for A. Finally, the pattern of TIM torsions has nearly $C_{2 v}$ symmetry in A, but is twisted a few degrees in B as if to rotate the up-turned $\mathrm{C}(4)$ away from the phenyl group. The B phenyl appears to be snapped into its niche (Fig. 1), where its intermolecular contacts all seem reasonable in relation to the usual van der Waals radii and to the other intermolecular contacts in the structure, none of which seem abnormal. (The H
contacts were not examined.) The $\mathrm{S}-\mathrm{C}(8)$ torsion angle could be changed to relieve the intramolecular strain, but only at the expense of shortening several intermolecular contacts, and we have no explanation for the large mainly in-plane U 's of the distal phenyl carbons in B.

The corresponding bond lengths and angles in the TIM's of A and B are nearly equal (Fig. 2, Table 2), with r.m.s. deviations $\left(0.010 \AA, 0.6^{\circ}\right)$, and both have similarly good $2 / m$ symmetry (not just $\overline{1}$) in bond lengths and, with a few exceptions, e.g. $\mathrm{Fe}-\mathrm{N}(1)-$ C(5^{\prime}), in bond angles also. Several structural features are summarized in Table 2 for each of the four Fe (TIM) compounds. Three of the important average lengths of potentially conjugated bonds are shorter in the thiolate complex than in the thiocyanate, (1) $\mathrm{Fe}-\mathrm{N}$ (TIM) by 0.022 (4) \AA, (2) $\mathrm{Fe}-\mathrm{S}$ by 0.040 (3) \AA, and (3) $\mathrm{C}-\mathrm{C}$ in the TIM diimine unit by 0.021 (14) \AA, and one is longer, $N=C$, by 0.018 (8) \AA, perhaps implying increased donation of electron density from the axial ligands to the iron atom, and from the iron atom into the diimine unit. Note that our $\mathrm{Fe}-\mathrm{S}$ average is in the range observed for tetrahedral $\mathrm{Fe}^{\mathrm{HI}}-\mathrm{S}_{4}$ complexes, e.g. $\left[\mathrm{Fe}\left(\mathrm{S}_{2}-\mathrm{O} \text {-xylyl }\right)_{2}\right]^{-} 2 \cdot 25-2 \cdot 28 \AA$ (Lane, Ibers, Frankel, Papaefthymiou \& Holm, 1977).

References

Duchamp, D. J., Trus, B. L. \& Westrhal, B. J. (1964). CR YRM Crystallographic Computing System. California Institute of Technology, Pasadena, California, USA.
International Tables for X-ray Crystallography' (1962). Vol. III, pp. 210-212. Birmingham: Kynoch Press.
Lane, R. W., Ibers, J. A., Frankel, R. B., Papaefthymiou, G. C. \& Holm, R. H. (1977). J. Am. Chem. Soc. 99, 84-98.
McCandlish, L. E., Santarsiero, B. D., Rose, N. J. \& Lingafelter, E. C. (1979). Acta Cry'st. B35, 3053-3056.
Smith, H. W., Santarsiero, B. D. \& Lingafelter, E. C. (1979). Cryst. Struct. Commun. 8, 49-52.
Stenkamp, R. E. \& Jensen, L. H. (1980). Unpublished.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRA Y76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

